Approximation of the Singularities of a Bounded Function by the Partial Sums of Its Differentiated Fourier Series
نویسندگان
چکیده
The problem of locating the discontinuities of a function by means of its truncated Fourier series, an interesting question in and of itself, arises naturally from an attempt to overcome the Gibbs phenomenon: the poor approximative properties of the Fourier partial sums of a discontinuous function. In [3], Cai et al. developed the idea already introduced in their previous papers and suggested a method for the reconstruction of a discontinuous function from the partial sums of its Fourier series. A key step of the method is the accurate approximation of the locations of singularities and the magnitudes of jumps of the function. Namely, let g be a 2π -periodic function with a finite number, M , of jump discontinuities that is piecewise smooth on the period. In addition, let us assume that the first 2n+ 1 Fourier coefficients of the function are known. If G(θ)= (π − θ)/2, θ ∈ (0,2π), is the 2π -periodic sawtooth function, then the function g can be represented as
منابع مشابه
Determination of a jump by Fourier and Fourier-Chebyshev series
By observing the equivalence of assertions on determining the jump of a function by its differentiated or integrated Fourier series, we generalize a previous result of Kvernadze, Hagstrom and Shapiro to the whole class of functions of harmonic bounded variation. This is achieved without the finiteness assumption on the number of discontinuities. Two results on determination of ...
متن کاملSome results of 2-periodic functions by Fourier sums in the space Lp(2)
In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.
متن کاملExponential Approximations Using Fourier Series Partial Sums
The problem of accurately reconstructing a piece-wise smooth, 2π-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f an...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملGibbs’ Phenomenon and Surface Area
If a function f is of bounded variation on TN (N ≥ 1) and {φn} is a positive approximate identity, we prove that the area of the graph of f ∗φn converges from below to the relaxed area of the graph of f . Moreover we give asymptotic estimates for the area of the graph of the square partial sums of multiple Fourier series of functions with suitable discontinuities.
متن کامل